
Stress Inference from Abdominal Sounds using Machine Learning

Erika Bondareva1,2, Marios Constantinides2†, Michael S. Eggleston3†, Ireneusz Jabłoński4†,
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Abstract— Stress is often considered the 21st century’s epi-
demic, affecting more than a third of the globe’s popula-
tion. Long-term exposure to stress has significant side effects
on physical and mental health. In this work we propose
a methodology for detecting stress using abdominal sounds.
During the data collection step, eight participants for ten days
were either exposed to a stressful (Stroop test) or a relaxing
(guided meditation) stimulus. In total, we collected 104 hours
of abdominal sounds using a custom wearable device in a belt
form-factor. We explored the effect of various features on the
binary stress classification accuracy using traditional machine
learning methods. Namely, we observed the impact of using
acoustic features on their own, as well as in combination with
daily mood report, and hand-crafted domain-specific features.
After feature extraction and reduction, by utilising a multilayer
perceptron classifier model we achieved 77% accuracy in
detecting abdominal sounds under stress exposure.

Clinical relevance— This feasibility study confirms the link
between the gastrointestinal system and stress and uncovers a
novel approach for stress inference via abdominal sounds using
machine learning.

I. INTRODUCTION

Stress is an experience of anticipating or encountering
adversity. In response to stress, our bodies typically react
by activating the sympathetic nervous system, withdrawing
the parasympathetic system, and increasing the activity of
the hypothalamic-pituitary-adrenal axis [1].

Traditionally, tracking stress is achieved through subjective
or objective measurements. The former include question-
naires, such as the Perceived Stress Scale (PSS) [2] or
the Kessler Psychological Distress Scale (K10) [3]. While
they are typically easy to administer and low-cost, they
tend to suffer from subjectivity biases. To obtain objective
measurements, stress biomarkers can be analysed from saliva
or blood, including epinephrine and nor-epinephrine, alpha-
amylase, and cortisol. As wearables are becoming more
popular, they offer a cheap alternative for continuous stress
monitoring in free-living settings [4].

The field of automated abdominal auscultation has only
started gaining traction in the past two decades. Numerous
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research efforts focused on classification of various states
by utilising abdominal sounds (ABS). For example, in [5]
a system was devised for evaluation of gastrointestinal
(GI) motility, especially for patients with diabetes mellitus.
Spiegel et al. [6] explored using ABS for detection of post-
operative ileus. In [7] a low-power system was devised for
monitoring ABS for detection of gastric events, linking the
frequency of the GI events to eating instances, and Kolle
et al. [8] later looked into using ABS for meal detection,
utilising SVMs. In [9] Mel-frequency cepstral coefficients
(MFCCs) and wavelet entropy were used as features for
a neural network for discriminating meal and no-meal GI
sounds. In addition to the research efforts at detecting eating
instances, a proof of concept of an irritable bowel syndrome
diagnostic system was devised in [10].

A promising yet underexplored area of tracking stress is
via GI activity by monitoring abdominal sounds. Stress has
both short-term and long-term effects on the GI system,
as it can affect gastric secretion, gut motility, mucosal
permeability, etc. [11]. Building on accumulated empirical
evidence, we hypothesised and tested the feasibility of de-
tecting whether a person is stressed from abdominal sounds.
In so doing, we made three sets of contributions:

• We collected a novel dataset comprised of 104 hours
of abdominal sounds using a custom laminated e-
stethoscope in a stretchable belt (Section II).

• Using this dataset, we extracted and compared a stan-
dard set of acoustic features versus hand-crafted fea-
tures, which were used to train classifiers for stress
detection (Section III).

• We used Support Vector Machine (SVM) and Multi-
layer Perceptron (MLP) classifiers for stress inference
from the acoustic features (Section IV), with our best
performing model achieving 77% accuracy.

Our primary research goal was to establish whether it is
possible to infer stress from abdominal sounds, collected
using a laminated e-stethoscope in a stretchable belt. To
address that, we subsequently formulated three research
questions as follows:

• RQ1: Using standard audio-based features, is it possible
to infer stress from sounds collected from the abdomen?

• RQ2: What effect does adding features representing cur-
rent mood state have on the inference accuracy?

• RQ3: What effect does using standard audio-based fea-
tures alongside hand-crafted features have on the inference
accuracy?



II. DATASET DESCRIPTION

We collected a novel dataset comprised of 104 hours
of abdominal sounds with and without stressful stimulus
from 8 subjects. The data collection was approved by the
ethics committee of the Department of Computer Science
and Technology at the University of Cambridge.

A. Wearables for Biometric Data Collection

To record abdominal body sounds, we utilised a custom-
built e-stethoscope in a stretchable belt with a high-quality
microphone in a flexible tube connected to the stethoscope
head. The belt had an adjustable strap with zip pockets,
with a data cable connected to an audio recorder. The audio
was collected in an MP3 format at 192 kHz, which upon
export was automatically resampled to 44.1 kHz. This data
recording approach was extensively tested and proved to
provide a signal barely discernable from a 192 kHz WAV
audio file, while being significantly smaller, thus easing file
transfer by study participants.

To reduce the potential level of noise inadvertently col-
lected during participants engaging in daily activities, we
targeted subjects with relatively sedentary lifestyles. In par-
ticular, the participants were asked to stay seated at the desk
during the data collection. While sitting, they were allowed
to engage in any activity of their choosing, e.g. working.

B. Stress Stimulus

To elicit a relatively controlled psychological response
from our participants, we chose two types of activities: i)
stressful task, and ii) relaxing task, each approximately 10–
15 minutes in duration. The participants were instructed to
complete the task once they start recording the biometrics.

At random, participants were given either the stressful
task or the relaxing task. The stressful task comprised of the
widely used Stroop Colour Word Test [12]. This exercise was
proven to reliably stimulate a stressful response, affecting the
participant’s cognitive load and physiological system [13],
[14]. The relaxing task involved watching and following a
video on YouTube with a guided meditation, from Headspace
YouTube series “Guided meditation with Andy”. Meditation
has been shown to regulate emotion, reduce stress, and
increase well-being, making it a suitable activity for inducing
a relaxed state [15].

C. Data Collection Tools

Each participant was issued a unique identification number
with which all the collected data was associated to ensure
data anonymisation. We collected each subject’s daily mood
through a short questionnaire similar to [16], comprised of
five questions relating their: i) happiness, ii) awakedness,
iii) relaxedness, iv) sleep quality the night before, and v)
stress levels the day before. Each question was answered on
a Likert scale, from 0 (“not at all”) to 5 (“very much”). These
short daily questionnaires were administered via Google
Forms. The daily task was set up via Pavlovia1, which

1https://pavlovia.org/

is an online platform designed for hosting psychological
experiments. Every day, upon starting the experiment, each
participant was asked to open a webpage set up specifically
for this study. The webpage contained instructions for the
daily task, and a button redirecting the participant to the
relevant link on Pavlovia for the daily task.

Participants recorded data for a total duration of 2 hours.
After the data collection was over, each participant was asked
to upload the breakfast picture (taken to ensure adherence to
the limited number of food items permitted for consumption
during the study to avoid significant influence of food on
GI system) and the collected ABS data to a Dropbox file
request link, set up purposefully for anonymous uploads. In
total, each participant was asked to collect the data for 10
days, although due to the daily data collection time being at
least 2 hours, participants were allowed to collect the data
on non-consecutive days, if they wished.

D. Study Protocol

Five steps were performed during data collection (Fig. 1):
1) Take a picture of the breakfast before eating it.
2) Put on the belt for collection of ABS, get comfortable at

the desk at a computer. Start recording the data.
3) Open the experiment webpage and start the daily task,

after which the daily questionnaire opens automatically.
4) Remain seated at the desk, while free to do anything. The

total duration of the daily data collection was 2 hours.
5) Once done with data collection, upload the data.

E. Dataset Statistics

Each participant recruited for this study went through
a rigorous prescreening and onboarding process. Anybody
currently suffering from digestive disorders, mood disorders,
or pregnant were excluded from this study in the prescreen-
ing stage. In addition, those on medication (e.g. sleeping
medication or antidepressants) were also excluded from the
study as medications may alter the mood or reaction time. To
ensure the correct set-up of the wearables for data collection,
short samples of biometric data went through a quality
control process, after which the participants started the study.
The quality control process involved algorithmically ensuring
sufficient signal-to-noise ratio of the collected ABS signal.
If the samples did not pass the quality control process, the
participants were advised to increase the belt tension to
ensure sufficient coupling between the skin and the sensor,
which significantly improved the signal quality.

In total, we collected data from 8 participants. Each of
the participants contributed 10 days worth of data, 2 hours
per day. However, some files had to be discarded from the
initial analysis due to inconsistencies in the recordings (e.g.,
missing audio samples, or missing Pavlovia performance
files). In addition, all the audio samples were manually
screened using an open-source software Audacity to ensure
that the recordings contained abdominal sounds, and no
significant noise was present. For this study, we used 52 data
samples from 8 participants. Among them, 4 were female
and 4 were male, with the age range 20–32 years old (µ =
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Fig. 1. The study design and the protocol steps followed by the study participants, with the associated timings. The green circle on the ABS belt shows
the location of the stethoscope head, on the left lower quadrant of the abdomen.

25.13 and σ = 3.76 years). Out of these 52 samples, 29 were
collected during exposure to stress, and 23 were collected
with the participants meditating during the daily task.

III. METHODOLOGY

A. Data Preprocessing
We labelled the ABS data collected on the days when the

participant did the Stroop test (during the stressful task) as
stress samples, and the ABS data from the days when the
participant meditated (during the relaxing task) as no-stress.

Each audio recording was at least 2 hours long, but due to
the nature of this study, the researchers had little to no control
over the participants’ mood state for most of this duration.
Therefore, in this work, only the first 5–30 minutes of the
audio recordings were used for the classification task, when
the participant is exposed to a known stimulus. To ensure
that no environmental noise was inadvertently captured, each
segmented window was filtered using a 4th order Butterworth
bandpass filter (60Hz to 3000Hz).

B. Extracted Features
To address RQ1, the INTERSPEECH ComParE 2018 fea-

ture set (IS-18) [17] was extracted from the ABS recordings,
yielding a vector with 6373 features. This feature set has
been applied successfully for many acoustic tasks and is
particularly attractive for automated classification tasks as it
allows researchers to bypass creating hand-crafted features.

Given the potential limitations of IS-18 feature set to
capture all the ABS components necessary for inference of
stress, RQ2 and RQ3 were posed to evaluate the classifier
performance with various feature vectors.

For RQ2 five features were added to the IS-18 feature vec-
tor, representing numerical scores shared by our participants
during the daily short questionnaire. To extract hand-crafted
features for RQ3, we applied a denoising algorithm—a 5th

order discrete wavelet transform (DWT) filter with a Coiflet
5 wavelet. Individual sounds likely related to gastric events
were identified by using a peak detection algorithm, and a
number of features was then extracted, inspired by the work
of [18]. Specifically, per minute-long segments we extracted:
the number of detected events, the duration µ and σ of the
detected events, the amplitude µ and σ of the detected events,
and the silence µ and σ between sounds duration, yielding
a total of 140 additional features.

Before using the features for classification, we scaled
them, and, in turn, principal component analysis was applied
to retain 51 components and a 99.9% variance ratio.

C. Classification Algorithm

For stress inference, we deployed a number of traditional
machine learning algorithms including that of k-nearest
neighbours, decision trees, random forest, support vector
machine (SVM), and multilayer perceptron (MLP). However,
SVM (with a linear kernel) and MLP (100 epochs) performed
better than the rest of the approaches, thus we report the
performance results on these two classifiers. For perfor-
mance evaluation, we used the leave-one-sample-out cross-
validation method and compared the performance across four
metrics: accuracy, precision, recall, and f-1 score.

IV. RESULTS AND DISCUSSION

We ran three experiments with varied feature sets, and
compared performance for two best performing classifiers
(Table I). While similar performance was observed across the
experiments, the slight variations offer interesting insights.

Using IS-18 features with or without the features repre-
senting the self-reported mental state of participants yielded
the same performance, and our MLP model achieved the
highest accuracy of 75%. Interestingly, instead of a perfor-
mance improvement with the additional hand-crafted fea-
tures, no changes in performance were observed for SVM,
while a slight reduction was observed across all the metrics
for our MLP model, except the metric of sensitivity. It
appears that using GI event related features allows for better
detection of stressful state, but also leads to a higher number
of false positives. Higher sensitivity might be desirable for
a stress detection algorithm: if this algorithm was used
for stress management, untimely notification to perform a
breathing exercise would cause fewer implications than miss-
ing a stressful episode. While a limited number of methods
could be used given the small amount of data, this result
encourages exploring neural networks and deep learning as
a method both yielding better performance, but also being
more sensitive to changes in the feature vectors.

We also examined the effect that the window size had on
our classifiers’ performance. Using MLP with IS-18 features,



TABLE I
PERFORMANCE METRICS ON STRESS INFERENCE FROM ABS, FOR

THREE RQS. MLP WITH AUDIO-BASED FEATURES IDENTIFIED THE

STRESSED STATE OF THE PARTICIPANT BEST, WITH A 75% ACCURACY.

RQ1 / RQ2 RQ3
SVM MLP SVM MLP

Accuracy 0.67 0.75 0.67 0.73
Sensitivity 0.69 0.69 0.69 0.72
Specificity 0.65 0.83 0.65 0.74
Precision 0.71 0.83 0.71 0.78
f1-score 0.70 0.75 0.70 0.75

we found that the best results are achieved by 5 and 20-
minute window sizes, with the highest accuracy of 77%
obtained by using a 5-minute window. Interestingly, the
highest specificity is achieved by using the longest window
of 30 minutes, albeit this window size also resulted in the
worst sensitivity, which remained unchanged for all the other
window sizes. This provides an insight into what ABS data
may be the most valuable for accurate stress inference.

Our work has both theoretical and practical implications.
From a theoretical standpoint, our results add empirical
evidence to the growing body of literature that links the GI
system to stress; stress directly affects GI motility and thus
abdominal sounds. From a practical perspective, we showed
that by using a sound recording belt, we uncovered a novel
approach for stress inference via continuous, yet minimally
obtrusive monitoring. Due to our system’s ubiquitous nature,
it could be used outside of medical facilities without any
medical supervision, and supplement the stress monitoring
capability with other ABS-related applications.

V. LIMITATIONS AND FUTURE WORK

Our work has limitations that call for future research
efforts. It is worth noting that the data was collected from a
limited group of participants, of a similar age and leading a
similar lifestyle, thus it is unclear how the findings presented
in this work would generalise to a wider population.

Stress is likely not a binary state, thus future studies could
investigate a finer-grained representation of participants’
stress. In addition, the physiological stress response may vary
widely across participants — if a participant has a positive
stress mindset [19], (s)he is likely to experience a smaller
physiological impact of stress. As a result, the prediction
of stress in such subjects is likely to be more challeng-
ing. However, future studies could address these limitations
through personalised models wherein each participant’s data
is considered in isolation.

While RQ2 focused on establishing whether current mood
state affects GI sounds, the mood score did not improve our
model’s performance. However, this effect might be in part
observed due to the scarcity of the samples, and correlation
between ABS and mood might be detectable upon larger
quantities of data available for analysis. In addition, future
studies could well use ABS for detecting one’s mental state
as opposed to inferring one’s experienced stress.

Based on the results obtained on the analysis of various
window sizes, the highest accuracy was obtained by the

shortest window, while the highest specificity was yielded
by the longest window. It appears that information necessary
for accurate identification of “stress-positive” cases mostly
is contained in the first minutes of the exposure to stress,
while most information necessary for confirming “stress-
negative” cases may be most accessible in longer audio
segments. Therefore, it would be imperative to explore using
ML methods specific to time-series data such as recurrent
neural networks (RNNs), provided that more data can be
obtained.
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